1.[TT]1. Introduction

1. MM T A T T A A A O T

OAuth[MTITTTTTITI T T T TCAut h T T T T T T T T T

OAuth 1.0RFC5 84T TIITITITITITITTITITTOAuth 1.OO T TNET FOOTITITITTITII
1.O[IIIIIIIIIIIIIIOAuth 2.0MIIIIIIIIIL

1. Introduction

In the traditional client-server authentication model, the client requests an access-
restricted resource (protected resource) on the server by authenticating with the server using
the resource owner's

credentials. 1In order to provide third-party applications access to restricted resources,
the resource owner shares its credentials with the third party. This creates several problems
and limitations:

0o Third-party applications are required to store the resource owner's credentials for
future use, typically a password in

clear-text.

0 Servers are required to support password authentication, despite the security
weaknesses inherent in passwords.

o Third-party applications gain overly broad access to the resource owner's protected
resources, leaving resource owners without any ability to restrict duration or access to a
limited subset of

resources.

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749#section-1

0 Resource owners cannot revoke access to an individual third party without revoking
access to all third parties, and must do so by

changing the third party's password.

Hardt Standards Track [Page 4]
RFC 6749 OAuth 2.0 October 2012
o Compromise of any third-party application results in compromise of the end-user's

password and all of the data protected by that
password.

OAuth addresses these issues by introducing an authorization layer and separating the role
of the client from that of the resource owner. 1In OAuth, the client requests access to
resources controlled

by the resource owner and hosted by the resource server, and is issued a different set of
credentials than those of the resource

owner.

Instead of using the resource owner's credentials to access protected resources, the client
obtains an access token -- a string denoting a specific scope, lifetime, and other access
attributes. Access tokens are issued to third-party clients by an authorization server with
the

approval of the resource owner. The client uses the access token to access the protected
resources hosted by the resource server.

For example, an end-user (resource owner) can grant a printing service (client) access to
her protected photos stored at a photo- sharing service (resource server), without sharing her
username and

password with the printing service. 1Instead, she authenticates directly with a server
trusted by the photo-sharing service (authorization server), which issues the printing service
delegation-

specific credentials (access token).

This specification is designed for use with HTTP ([RFC2616]). The use of OAuth over any
protocol other than HTTP is out of scope.

The OAuth 1.0 protocol ([RFC5849]), published as an informational document, was the result
of a small ad hoc community effort. This Standards Track specification builds on the OAuth
1.0 deployment

experience, as well as additional use cases and extensibility requirements gathered from

the wider IETF community. The OAuth 2.0 protocol is not backward compatible with OAuth 1.0.

The two versions

may co-exist on the network, and implementations may choose to support both. However, it
is the intention of this specification that new implementations support OAuth 2.0 as specified
in this

document and that OAuth 1.0 is used only to support existing deployments. The OAuth 2.0
protocol shares very few implementation details with the OAuth 1.0 protocol. Implementers
familiar with

OAuth 1.0 should approach this document without any assumptions as to

its structure and details.

Revision #4
Created Tue, Mar 24, 2020 11:48 PM by [IT]
Updated Wed, Mar 25, 2020 12:29 AM by [1TJ

https://loveerror.com/user/1
https://loveerror.com/user/1

