1.[TT11. Introduction[]

1H.[TH1.1. Roles[]
1R. [THIT1.2. Protocol Flow[]

1.3. [IIT1[01.3. Authorization Grant[]

1.3.1. [T1]1[1.3.1. Authorization Code[]

1.3.2. [T11171.3.2. Implicit[j

1.3.3. [JIIIIIIT] 01.3.3. Resource Owner Password Credentials[]
1.3.4. [TIII]1.3.4. Client Credentials[]

1.4. [T111[1.4. Access Token[]

1.5. [IT11[1.5. Refresh Token[]

1.6. TLS[IT]L.6. TLS Version[]

1.7. HTTP[III1.7. HTTP Redirections[]

1.8. [TI1171.8. Interoperability[]

1.9. 111

1.[TT]1. Introduction

1 o

OAuth 1.0RECS5 849 ITTTTITITTITITITITITTITITITITOAuth 1.0 T ETFOTITITITITITIT

L.O[MIITITITTITTITIOAUth 2. O[T

1. Introduction

In the traditional client-server authentication model, the client requests an access-
restricted resource (protected resource) on the server by authenticating with the server using
the resource owner's

credentials. 1In order to provide third-party applications access to restricted resources,
the resource owner shares its credentials with the third party. This creates several problems
and limitations:

0 Third-party applications are required to store the resource owner's credentials for
future use, typically a password in

clear-text.

0 Servers are required to support password authentication, despite the security

weaknesses inherent in passwords.

0 Third-party applications gain overly broad access to the resource owner's protected

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749#section-1

resources, leaving resource owners without any ability to restrict duration or access to a
limited subset of
resources.
0 Resource owners cannot revoke access to an individual third party without revoking
access to all third parties, and must do so by

changing the third party's password.

Hardt Standards Track [Page 4]
RFC 6749 OAuth 2.0 October 2012
o Compromise of any third-party application results in compromise of the end-user's

password and all of the data protected by that
password.

OAuth addresses these issues by introducing an authorization layer and separating the role
of the client from that of the resource owner. In OAuth, the client requests access to
resources controlled

by the resource owner and hosted by the resource server, and is issued a different set of
credentials than those of the resource

owner.

Instead of using the resource owner's credentials to access protected resources, the client
obtains an access token -- a string denoting a specific scope, lifetime, and other access
attributes. Access tokens are issued to third-party clients by an authorization server with
the

approval of the resource owner. The client uses the access token to access the protected
resources hosted by the resource server.

For example, an end-user (resource owner) can grant a printing service (client) access to
her protected photos stored at a photo- sharing service (resource server), without sharing her
username and

password with the printing service. Instead, she authenticates directly with a server
trusted by the photo-sharing service (authorization server), which issues the printing service
delegation-

specific credentials (access token).

This specification is designed for use with HTTP ([RFC2616]). The use of OAuth over any
protocol other than HTTP is out of scope.

The OAuth 1.0 protocol ([RFC5849]), published as an informational document, was the result

of a small ad hoc community effort. This Standards Track specification builds on the OAuth
1.0 deployment

experience, as well as additional use cases and extensibility requirements gathered from
the wider IETF community. The OAuth 2.0 protocol is not backward compatible with OAuth 1.0.
The two versions

may co-exist on the network, and implementations may choose to support both. However, it
is the intention of this specification that new implementations support OAuth 2.0 as specified
in this

document and that OAuth 1.0 is used only to support existing deployments. The OAuth 2.0
protocol shares very few implementation details with the OAuth 1.0 protocol. Implementers
familiar with

OAuth 1.0 should approach this document without any assumptions as to

its structure and details.

1.1. [TT]1.1. Roles

1.1. Roles

OAuth defines four roles:
resource owner
An entity capable of granting access to a protected resource. When the resource owner
is a person, it is referred to as an
end-user.
resource server
The server hosting the protected resources, capable of accepting and responding to

protected resource requests using access tokens.

client
An application making protected resource requests on behalf of the resource owner and
with its authorization. The term "client" does not imply any particular implementation
characteristics (e.g., whether the application executes on a server, a desktop, or
other
devices).
authorization server The server issuing access tokens to the client after
successfully

authenticating the resource owner and obtaining authorization.
The interaction between the authorization server and resource server 1is beyond the scope of
this specification. The authorization server may be the same server as the resource server or

a separate entity.

https://tools.ietf.org/html/rfc6749#section-1.1

A single authorization server may issue access tokens accepted by multiple resource servers.

1.2. [TTIT11.2. Protocol Flow

[|--(A)- Authorization Request ->| Resource [
| | | Owner [
| |<-(B)-- Authorization Grant ---| |
| | Fommmmmme e +

[| L +

| Client | | Server |
| |[<-(D)----- Access Token ------- | |
| | Fommm e - +
| |

[| L +
[--(E)----- Access Token ------ >	Resource	
		Server
	<-(F)--- Protected Resource ---	
T + Fommm e - +

0L

OLOITTITIOAuth 2. O[T T T TIITTTITIT]

* DA OO
.DBWWWW

Heannninnnnnnnnnnnnnnnnnnnnnnnnng
* DM
OECT T T OO T
* OFOOOOO T

A BT DA OB O I

-4.1. O[3
e +
| Resource |
[Owner |
I I
L +
I
(B)
+o--- |- + Client Identifier e +
| -+----(A)-- & Redirection URI ---->|
| User- | | Authorization |
| Agent -+----(B)-- User authenticates --->| Server |
I I I I
| -+----(C)-- Authorization Code ---<|
+-|----]---+ B +
I I - v
(A) (C) | |
I I I I
TV I I
femesseee- i | |
| |>---(D)-- Authorization Code --------- '
| Client | & Redirection URI

https://github.com/jeansfish/RFC6749.zh-cn/blob/master/Section04/4.1.md

frocooooooo + (w/ Optional Refresh Token)

TTOAT DB TCO T T
(BT

1.2. Protocol Flow

e + e + [--(A)-
Authorization Request ->| Resource | |
Owner |

| |<-(B)-- Authorization Grant ---|
| R I +

I I

| | R RECLEEEE + |--(C)--
Authorization Grant -->| Authorization | | Client | |
Server |

| |<-(D)----- Access Token -------

[tom e oo +

I I

| [e + [--(E)----- Access
Token ------ >| Resource | | Server
I

| |<-(F)--- Protected Resource ---| fooccosoo
+ TS +

Figure 1: Abstract Protocol Flow

The abstract OAuth 2.0 flow illustrated in Figure 1 describes the interaction between the
four roles and includes the following steps:

(A) The client requests authorization from the resource owner. The authorization
request can be made directly to the resource owner (as shown), or preferably indirectly
via the authorization

server as an intermediary.

(B) The client receives an authorization grant, which is a credential representing

https://tools.ietf.org/html/rfc6749#section-1.2

the resource owner's authorization, expressed using one of four grant types defined in

this
specification or using an extension grant type. The authorization grant type
depends on the method used by the client to request authorization and the types supported
by the
authorization server.
(C) The client requests an access token by authenticating with the authorization

server and presenting the authorization grant.
(D) The authorization server authenticates the client and validates the authorization

grant, and if valid, issues an access token.

Hardt Standards Track [Page 7]
RFC 6749 OAuth 2.0 October 2012
(E) The client requests the protected resource from the resource server and

authenticates by presenting the access token.

(F) The resource server validates the access token, and if valid, serves the
request.

The preferred method for the client to obtain an authorization grant from the resource
owner (depicted in steps (A) and (B)) is to use the authorization server as an intermediary,

which is illustrated in Figure 3 in Section 4.1.

1.3. [TTT]1[]1.3. Authorization G

1.3. [I11]

OO T T T I I T A A —— A T T I T ——0 T T T T

1.3. Authorization Grant

An authorization grant is a credential representing the resource owner's authorization (to

access its protected resources) used by the client to obtain an access token. This

specification defines four grant types -- authorization code, implicit, resource owner
password
credentials, and client credentials -- as well as an extensibility

mechanism for defining additional types.

https://tools.ietf.org/html/rfc6749#section-1.3

1.3.1. [TT1[11.3.1. Authorizatior

Code

1.3.1. Authorization Code

The authorization code is obtained by using an authorization server as an intermediary
between the client and resource owner. Instead of requesting authorization directly from the
resource owner, the client

directs the resource owner to an authorization server (via its user-agent as defined in
[RFC2616]1), which in turn directs the resource owner back to the client with the authorization
code.

Before directing the resource owner back to the client with the authorization code, the
authorization server authenticates the resource owner and obtains authorization. Because the
resource owner

only authenticates with the authorization server, the resource owner's credentials are
never shared with the client.

The authorization code provides a few important security benefits, such as the ability to

authenticate the client, as well as the transmission of the access token directly to the

http://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6749#section-1.3.1

client without
passing it through the resource owner's user-agent and potentially

exposing it to others, including the resource owner.

1.3.2. [TT1111.3.2. Implicit

1.3.2. [111]

O avaScript T T T T T T T O A T T

O T T VRO O T

1.3.2. Implicit

The implicit grant is a simplified authorization code flow optimized for clients
implemented in a browser using a scripting language such as JavaScript. 1In the implicit flow,

instead of issuing the client an authorization code, the client is issued an access token

directly
Hardt Standards Track [Page 8]
RFC 6749 OAuth 2.0 October 2012

(as the result of the resource owner authorization). The grant type is implicit, as no
intermediate credentials (such as an authorization code) are issued (and later used to obtain

an access token).

https://github.com/jeansfish/RFC6749.zh-cn/blob/master/Section10/10.3.md
https://github.com/jeansfish/RFC6749.zh-cn/blob/master/Section10/10.16.md
https://tools.ietf.org/html/rfc6749#section-1.3.2

When issuing an access token during the implicit grant flow, the authorization server does
not authenticate the client. 1In some cases, the client identity can be verified via the
redirection URI

used to deliver the access token to the client. The access token may be exposed to the
resource owner or other applications with access to

the resource owner's user-agent.

Implicit grants improve the responsiveness and efficiency of some clients (such as a client
implemented as an in-browser application), since it reduces the number of round trips required
to obtain an

access token. However, this convenience should be weighed against the security
implications of using implicit grants, such as those described in Sections 10.3 and 10.16,

especially when the authorization code grant type is available.

1.3.3. [TTITITIT][1.3.3. Resour

Owner Password Credentials

1.3.3. Resource Owner Password Credentials

The resource owner password credentials (i.e., username and password) can be used directly
as an authorization grant to obtain an access token. The credentials should only be used when
there is a high

degree of trust between the resource owner and the client (e.g., the client is part of the
device operating system or a highly privileged application), and when other authorization
grant types are not

available (such as an authorization code).

Even though this grant type requires direct client access to the resource owner
credentials, the resource owner credentials are used for a single request and are exchanged
for an access token. This

grant type can eliminate the need for the client to store the resource owner credentials

for future use, by exchanging the credentials with a long-lived access token or refresh token.

https://tools.ietf.org/html/rfc6749#section-1.3.3

1.3.4. [TTIIT11.3.4. Client

Credentials

1.3.4. Client Credentials

The client credentials (or other forms of client authentication) can be used as an
authorization grant when the authorization scope is limited to the protected resources under
the control of the client, or to protected resources previously arranged with the
authorization

server. Client credentials are used as an authorization grant typically when the client is
acting on its own behalf (the client is also the resource owner) or is requesting access to
protected

resources based on an authorization previously arranged with the

authorization server.

https://tools.ietf.org/html/rfc6749#section-1.3.4

1.4. [TIT][11.4. Access Token

1.4. Access Token

Access tokens are credentials used to access protected resources. An access token is a
string representing an authorization issued to the «client. The string is usually opaque to
the client. Tokens

represent specific scopes and durations of access, granted by the resource owner, and
enforced by the resource server and authorization

server.

The token may denote an identifier used to retrieve the authorization information or may
self-contain the authorization information in a verifiable manner (i.e., a token string
consisting of some data and a signature). Additional authentication credentials, which are
beyond

the scope of this specification, may be required in order for the

client to use a token.

The access token provides an abstraction layer, replacing different authorization

constructs (e.g., username and password) with a single token understood by the resource

http://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749#section-1.4

server. This abstraction enables issuing access tokens more restrictive than the
authorization grant

used to obtain them, as well as removing the resource server's need to understand a wide
range of authentication methods.

Access tokens can have different formats, structures, and methods of utilization (e.g.,
cryptographic properties) based on the resource server security requirements. Access token
attributes and the

methods used to access protected resources are beyond the scope of this specification and

are defined by companion specifications such as [RFC6750].

1.5. [TIT][11.5. Refresh Token

1.5. [T11]

O T T T I I A T T T T I

| |<-(B)----------- Access Token ------------- [|

| | & Refresh Token | |

| | fromocsemz=- + |
| |--(C)---- Access Token ---->| | |
I I I (I I
	<-(D)- Protected Resource --	Resource		Authorization
Client		Server		Server
	--(E)---- Access Token ---->			
I	I (. I			
	<-(F)- Invalid Token Error -			
	e +			
I I I I				
[--(G)----------- Refresh Token ----------- >				

I I I I
| [<-(H)----------- Access Token ------------- | |

Foma - + & Optional Refresh Token TR +

2T

[ROTTITIIII

* AT

* BT T

* DCOIII T

0D T

CETOCO DO T T T T T T T T T I TOG OO M T I T

OHO O O T T —— 0T ——{ T

OCAERROE T OF

1.5. Refresh Token

Refresh tokens are credentials used to obtain access tokens. Refresh tokens are issued to
the client by the authorization server and are used to obtain a new access token when the
current access token

becomes invalid or expires, or to obtain additional access tokens with identical or
narrower scope (access tokens may have a shorter lifetime and fewer permissions than
authorized by the resource owner). Issuing a refresh token is optional at the discretion of
the

authorization server. If the authorization server issues a refresh token, it is included
when issuing an access token (i.e., step (D) in

Figure 1).

A refresh token is a string representing the authorization granted to the client by the
resource owner. The string is usually opaque to the client. The token denotes an identifier
used to retrieve the

Hardt Standards Track [Page 10]

https://github.com/jeansfish/RFC6749.zh-cn/blob/master/Section07/7.md
https://tools.ietf.org/html/rfc6749#section-1.5

RFC 6749 OAuth 2.0

authorization information. Unlike access tokens, ref
with authorization servers and are never sent

to resource servers.

+--- - - + o
Authorization Grant --------- > |
! |
NCKENNCEEEEEEEEEEEE | || I
| |

I I |
I L I + |
Token ----> | | |
[|

I |<-(D)- Protected Resource --| Resource | |
I | Server | | Server
Token ----> | | | I
[|

I |<-(F)- Invalid Token Error -| |
I L T + |

Figure 2: Refreshing an Expired Access To

The flow illustrated in Figure 2 includes the followi

(A) The client requests an access token by authentic
server and presenting an authorization grant.

(B)

grant, and if valid, issues an access token

The authorization server authenticates the clien

and a refresh token.

(C)
presenting the access token.
(D)
request.

(E)

The client makes a protected resource request to

The resource server validates the access token,

Steps (C) and (D) repeat until the access token

October 2012

resh tokens are intended for use only

--------------- + [--(A)-------
|| |[<-(B)----------- Access
& Refresh Token
.
| | |--(C)---- Access
I
Authorization | | Client
| | |--(E)---- Access
I
(I
|
I |--(G)----mmmo--
|| |<-(H)----------- Access
& Optional Refresh Token
ken
ng steps:
ating with the authorization

t and validates the authorization

the resource server by

and if valid, serves the

expires. If the client knows the

access token expired, it skips to step (G); otherwise, it makes another protected

resource request.

(F) Since the access token is invalid, the resource server returns an invalid token
error.
Hardt Standards Track [Page 11]
RFC 6749 OAuth 2.0 October 2012

(G) The client requests a new access token by authenticating with the authorization
server and presenting the refresh token. The client authentication requirements are

based on the client type
and on the authorization server policies.
(H) The authorization server authenticates the client and validates the refresh
token, and if valid, issues a new access token (and,
optionally, a new refresh token).
Steps (C), (D), (E), and (F) are outside the scope of this

specification, as described in Section 7.

1.6. TLS[I]]1.6. TLS Version

THHEBEETOTTTTTITLS 1.2[]

OO T

1.6. TLS Version

Whenever Transport Layer Security (TLS) is used by this specification, the appropriate
version (or versions) of TLS will vary over time, based on the widespread deployment and known
security

vulnerabilities. At the time of this writing, TLS version 1.2 [RFC5246] is the most recent
version, but has a very limited

deployment base and might not be readily available for implementation. TLS version 1.0
[RFC2246] is the most widely deployed version and will provide the broadest
interoperability.

Implementations MAY also support additional transport-layer security

mechanisms that meet their security requirements.

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc6749#section-1.6

1.7. HTTP[IIT]1.7. HTTP

Redirections

1.7. HTTPIT

TOHT TP T T T I T T T T THT TP 302 T I T T T

1.7. HTTP Redirections

This specification makes extensive use of HTTP redirections, in which the client or the
authorization server directs the resource owner's user-agent to another destination. While
the examples in this

specification show the use of the HTTP 302 status code, any other method available via the
user-agent to accomplish this redirection is

allowed and is considered to be an implementation detail.

https://tools.ietf.org/html/rfc6749#section-1.7

1.8. [TTIT11.8. Interoperability[

1.8. [T11]

OAuth 2. 0TI T T T T T T T T T T O T T T T T

1.8. Interoperability

OAuth 2.0 provides a rich authorization framework with well-defined security properties.
However, as a rich and highly extensible framework with many optional components, on its own,
this

specification is likely to produce a wide range of non-interoperable

implementations.

In addition, this specification leaves a few required components partially or fully

undefined (e.g., client registration, authorization server capabilities, endpoint discovery).
Without

Hardt Standards Track [Page 12]

RFC 6749 OAuth 2.0 October 2012

these components, clients must be manually and specifically configured against a specific

https://tools.ietf.org/html/rfc6749#section-1.8

authorization server and resource
server in order to interoperate.
This framework was designed with the clear expectation that future work will define

prescriptive profiles and extensions necessary to achieve full web-scale interoperability.

1.9. [TIT]

1.9. [T11]

IRACH AT T TTHITIABREBHRGTIMURI T ITTTIORITTITTT"

(OO (00 (0 O TRFO 2D
AR R nnnnnnnnnnnnngngagnngagnagagaagagnagaguagaguagaiuagadnndadnadednngigingigingy

OO T

1.9. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described
in [RFC2119].

This specification uses the Augmented Backus-Naur Form (ABNF) notation of [RFC5234].
Additionally, the rule URI-reference is included from "Uniform Resource Identifier (URI):
Generic Syntax"

[RFC3986] .

Certain security-related terms are to be understood in the sense defined in [RFC4949].

These terms include, but are not limited to, "attack", "authentication", "authorization",
"certificate",
"confidentiality", "credential", "encryption", "identity", "sign", "signature", "trust",

"validate", and "verify".

Unless otherwise noted, all the protocol parameter names and values

are case sensitive.

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc6749#section-1.9

